Simwe仿真论坛(forum.simwe.com),CAE/CAD/CAM/,FEA/FEM/有限元分析论坛---(手机验证注册)

 找回密码
 注册
查看: 2132|回复: 5

[【2】力学] 受非线性弹簧约束受压柱稳定问题讨论

[复制链接]
发表于 2013-6-25 21:35:53 | 显示全部楼层 |阅读模式
描述:
如图1所示的细长柱, 高度为L,截面bXh(h>b). 柱子底部固支、顶部受压F.

                                   
                                                  图1 问题描述


在柱中部的弱轴方向有一个非线性弹簧(弹簧刚度K1和K2,K1>K2,如下图所示). 假设弹簧刚度并不是非常大,以至于受压时柱子仍然首先沿着弱轴方向失稳.                  
                                 
                                                      图2 弹簧刚度

问题
    分析这个有弹簧约束的失稳求解临界力的时候,可以把非线性弹簧视为刚度为K1的线性弹簧来分析么?

     欢迎大家讨论。






本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2013-7-13 18:20:42 | 显示全部楼层
I was thinking that if you use K1 you might get the upper limit of the critical buckling load while K2 lets you have the lower limit. Is that right?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2013-7-13 18:33:54 | 显示全部楼层
tonnyw 发表于 2013-7-13 18:20
I was thinking that if you use K1 you might get the upper limit of the critical buckling load while  ...

Initially,I had the same concept with you. After think it over, I suppose that buckling happens with a transverse deflection being much less than width of the section, b. In this regard, deduction with K1 should give better critical force during buckling.

I am not sure if I confused myself or not on this problem.
回复 支持 反对

使用道具 举报

发表于 2013-7-13 18:48:56 | 显示全部楼层
Is it possible that analytical solution can be obtained for this problem?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2013-7-13 19:33:32 | 显示全部楼层
tonnyw 发表于 2013-7-13 18:48
Is it possible that analytical solution can be obtained for this problem?

I am presently seeking for the analytical solution. I think it is achievable.

Dr. W, do u wanna try?
回复 支持 反对

使用道具 举报

发表于 2013-7-14 00:40:20 | 显示全部楼层
zsq-w 发表于 2013-7-13 19:33
I am presently seeking for the analytical solution. I think it is achievable.

Dr. W, do u wanna t ...

Analytical solution is definitely doable. Here we have boundary conditions at the top and bottom ends. We have continuity condition at the support place. Then we have two governing equations for two parts. The derivation is going to be nasty. Having said that, it can be done.

评分

1

查看全部评分

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则


Archiver|手机版|小黑屋|联系我们|中国仿真互动网 ( 沪ICP备07510919号  

GMT+8, 2018-1-23 23:44 , Processed in 0.169490 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.3 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表