找回密码
 注册
Simdroid-非首页
查看: 538|回复: 17

[前处理] #强大的neper-三维voronoi泰森多边形建立#

[复制链接]
发表于 2018-11-13 16:12:35 | 显示全部楼层 |阅读模式 来自 陕西
本帖最后由 weizhiyuanmali 于 2019-1-20 18:38 编辑

neper--相信做晶粒的大家都不陌生了,今天就再来介绍这块强大的linux下的voronoi建模软件。

网址:http://neper.sourceforge.net/


缺点:一款全新软件需要长时间学习;需要熟悉linux操作及命令;此软件使用人较少,缺少讨论对象

优点:除了缺点,嘿嘿
基本介绍:

[tr]Neper: polycrystal generation and meshing

[tr]Neper is a software package for polycrystal generation and meshing. It can deal with 2D and 3D polycrystals with very large numbers of grains. Its main features are:

  • Generation of polycrystals from (experimental) morphological properties

    [tr]Standard approaches (regular tessellations and Voronoi or Laguerre tessellations) are also available.


    • [tr]Grain size distribution, grain shape distribution, etc.
    • [tr]Grain-by-grain data as obtained for example in synchrotron X-ray diffraction (3DXRD, DCT, HEDM, ...) and such as grain centroids/volumes or a full polycrystal image.
  • Generation of multiscale microstructures

    [tr]Each cell of a primary tessellation is partitioned into a new tessellation, and the process can be repeated an arbitrary number of times. This can be used to mode complex microstructures such as bainitic steel, lamellar Ti-6Al-4V, etc.

  • Generation of periodic or semi-periodic microstructures

    [tr]The tessellations (and their meshes) can be prescribed periodic or semi-periodic conditions to cancel the effect of free surfaces or reduce the size of the RVE.

  • NEW (version 3.3): Generation of uniform orientation distributions

    [tr]Orientations can be uniformly distributed (flat ODF) for any number of orientations and any crystal symmetry. Some orientations can even be prescribed.

  • Meshing into good-quality elements

    [tr]Meshing involves specific methods called regularization, multimeshing and remeshing. The mesh size can be uniform or defined on a per-grain basis.

  • Meshing with cohesive elements at interfaces

  • Visualization and analysis of the tessellations and meshes

    [tr]The scene can be set in great detail and images are generated with publication-quality rendering (see the image on the right). Several metrics are available on the morphological and topological properties.


[tr]Neper is built around three modules: generation, meshing and visualization. All the input data are prescribed non-interactively, using command lines and / or ASCII files. Neper can be compiled and run on any Unix-like system.

[tr]下面只放效果图了,详细的自己去官网看(包括软件下载):

[tr]

[tr]

网格划分:

可视化:

应用:

2019


    • [tr]Grabowski,

      Modelling of thermal expansion of single- and two-phase ceramic polycrystals utilising synthetic 3D microstructures, Computational Materials Science

      [tr], vol. 156, pp. 7–16, 2019.
2018
  • [tr]D. Zhu, S. Tu, H. Ma, H. Wei, H. Li and C. Wang,

    Modeling and calculating for the compaction characteristics of waste rock masses, International Journal for Numerical and Analytical Methods in Geomechanics

    [tr], doi:10.1002/nag.2862.
  • [tr]J.V. Kobylinski, R. Lawitzki, M. Hofmann, C. Krempaszky and E. Werner,

    Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling, Continuum Mechanics and Thermodynamics

    [tr], doi:10.1007/s00161-018-0720-0.


    • [tr]Yang, J. Dirrenberger, E. Monteiro and N. Ranc,

      Representative volume element size determination for viscoplastic properties in polycrystalline materials, International Journal of Solids and Structures

      [tr], doi:10.1016/j.ijsolstr.2018.09.011.


    • [tr]Zhang, Y. Mu, M. Dodaran, S. Shao, D. Moldovan and W.J. Meng,

      Mechanical failure of CrN/Cu/CrN interfacial regions under tensile loading, Acta Materialia

      [tr], doi:10.1016/j.actamat.2018.08.046.


    • [tr]Hu, S. Jiang, J. Tu and Z. Zhou,

      Subgrain Effect on Grain Scale Plasticity of NiTi Shape Memory Alloy Under Canning Compression: A Crystal Plasticity Finite Element Analysis, Metals and Materials International

      [tr], doi://10.1007/s12540-018-0178-4.


    • [tr]Barzdajn, A.T. Paxton, D. Stewart, F.P.E. Dunne,

      A Crystal Plasticity Assessment of Normally-loaded Sliding Contact in Rough Surfaces and Galling, Journal of the Mechanics and Physics of Solids

      [tr], doi:10.1016/j.jmps.2018.08.004.


    • [tr]Chandra, M.K. Samal, R. Kapoor, N. Naveen Kumar, V.M. Chavan and S. Raghunathan,

      Deformation behavior of Nickel-based superalloy Su-263: Experimental characterization and crystal plasticity finite element modeling, Materials Science and Engineering: A

      [tr], vol. 735, pp. 19-30, 2018.


    • [tr]Quey, A. Villani and C. Maurice,

      Nearly uniform sampling of crystal orientations, Journal of Applied Crystallography

      [tr], vol. 51, pp. 1162-1173, 2018.


    • [tr]Chatterjee, M.P. Echlin, M. Kasemer, P.G. Callahan, T.M. Pollock and P. Dawson,

      Prediction of tensile stiffness and strength of Ti-6Al-4V using instantiated volume elements and crystal plasticity, Acta Materialia

      [tr], doi:10.1016/j.actamat.2018.07.011.


    • [tr]Abdelaziz, Q. Zhao and G. Grasselli,

      Grain based modelling of rocks using the combined finite-discrete element method, Computers and Geotechnics

      [tr], vol. 103, pp. 73-81, 2018.
  • [tr]M. Marvi-Mashhadi, C.S. Lopez and J. LLorca,

    Effect polyurethane foams: an experimental and numerical study, Mechanics of Materials

    [tr], doi:10.1016/j.mechmat.2018.06.006.


    • [tr]Zhao, W. Wang and Y. Liu,

      Intergranular mechanical behavior in a blade groove-like component by crystal plasticity model with cohesive zone model, Engineering Fracture Mechanics

      [tr], doi:10.1016/j.engfracmech.2018.06.031.
  • [tr]B. Hudobivnik, F. Aldakheel and P. Wriggers,

    A low order 3D virtual element formulation for finite elasto–plastic deformations, Computational Mechanics

    [tr], doi:10.1007/s00466-018-1593-6.
  • [tr]A.A. El-Aty, Y. Xu, S. Ha and S.-H. Zhang,

    Computational homogenization of tensile deformation behaviors of a third generation Al-Li alloy 2060-T8 using crystal plasticity finite element method, Materials Science and Engineering: A

    [tr], doi:10.1016/j.msea.2018.06.088.


    • [tr]Feng, H. Li, J. Yang, H. Huang, G. Li and D. Huang,

      Macro-meso scale modeling and simulation of surface roughening: Aluminum alloy tube bending, International Journal of Mechanical Sciences

      [tr], doi:10.1016/j.ijmecsci.2018.06.032.
  • [tr]I. Benedetti and V. Gulizzi,

    A grain-scale model for high-cycle fatigue degradation in polycrystalline materials, International Journal of Fatigue

    [tr], pp. 90-105, vol. 116, 2018.


    • [tr]Wang and M. Cai,

      Modeling of brittle rock failure considering inter- and intra-grain contact failures, Computers and Geotechnics

      [tr], vol. 101, pp. 224-244, 2018.


    • [tr]de Bortoli, F. Adziman, E.A. de Souza Neto and F.M. Andrade Pires,

      Constitutive modelling of mechanically induced martensitic transformations: Prediction of transformation surfaces, Engineering Computations

      [tr], vol. 35, pp. 772-799, doi:10.1108/EC-03-2017-0087.


    • [tr]Benedetti,

      A Cohesive-frictional Grain-boundary Technique for Microstructural Analysis of Polycrystalline Materials, Advances in Computational Coupling and Contact Mechanics

      [tr], doi:10.1142/9781786344786_0009.


    • [tr]Gribanov, R. Taylor and R. Sarracino,

      Cohesive zone micromechanical model for compressive and tensile failure of polycrystalline ice, Engineering Fracture Mechanics

      [tr], doi:10.1016/j.engfracmech.2018.04.023.


    • [tr]Ghodrati, M. Ahmadian and R. Mirzaeifar,

      Modeling of Rolling Contact Fatigue in Rails at the Microstructural Level, Wear

      [tr], doi:10.1016/j.wear.2018.04.016.


    • [tr]Van Pamel, G. Sha, M.J.S. Lowe and S.I. Rokhin,

      Numerical and analytic modelling of elastodynamic scattering within polycrystalline materials, The Journal of the Acoustical Society of America

      [tr], vol. 143, pp. 2394, 2018.


    • [tr]Gribanov, R. Taylor and R. Sarracino,

      Parallel implementation of implicit finite element model with cohesive zones and collision response using CUDA, International Journal for Numerical Methods in Engineering

      [tr], doi:10.1002/nme.5825.


    • [tr]Bouchedjra, T. Kanit, C. Boulemia, A. Amrouche and M.E.A. Belouchrani,

      Determination of the RVE size for polycrystal metals to predict monotonic and cyclic elastoplastic behavior: Statistical and numerical approach with new criteria, European Journal of Mechanics - A/Solids

      [tr], doi:10.1016/j.euromechsol.2018.04.011.


    • [tr]Alabort, D. Barba, S. Sulzer, M. Libner, N. Petrinic and R.C. Reed,

      Grain boundary properties of a nickel-based superalloy: characterisation and modelling, Acta Materialia

      [tr], doi:10.1016/j.actamat.2018.03.059.


    • [tr]Yuan, W. Zhang, G.M. Castelluccio, J. Kim and Y. Liu,

      Microstructure-sensitive Estimation of Small Fatigue Crack Growth in Bridge Steel Welds, International Journal of Fatigue

      [tr], doi:10.1016/j.ijfatigue.2018.03.015.


    • [tr]Liu, Y. Zhu, C. Oskay, P. Hu, L. Ying and D. Wang,

      Experimental and Computational Study of Microstructural Effect on Ductile Fracture of Hot-Forming Materials, Materials Science and Engineering: A

      [tr], doi:10.1016/j.msea.2018.03.049.


    • [tr]Fischbacher, A. Kovacs, M. Gusenbauer, H. Oezelt, L. Exl, S. Bance and T. Schrefl,

      Micromagnetics of rare-earth efficient permanent magnets, Journal of Physics D: Applied Physics

      [tr], doi:10.1088/1361-6463/aab7d1.
  • [tr]S.I. Ranganathan, M.R. Murshed and L. Costa,

    Heterogeneous Anisotropy Index and scaling in two-phase random polycrystals, Acta Mechanica

    [tr], doi:10.1007/s00707-018-2114-6.


    • [tr]Vidyasagar, A.D. Tutcuoglu and D.M. Kochmann,

      Deformation patterning in finite-strain crystal plasticity by spectral homogenization with application to magnesium, Computer Methods in Applied Mechanics and Engineering

      [tr], accepted.


    • [tr]Madivala, A. Schwedt, S.L. Wong, F. Roters, U. Prahl and W. Bleck,

      Temperature dependent strain hardening and fracture behavior of TWIP steel, International Journal of Plasticity

      [tr], doi:10.1016/j.ijplas.2018.02.001.


    • [tr]Johnson and C. Kurniawan,

      An efficient algorithm for generating diverse microstructure sets and delineating properties closures, Acta Materialia

      [tr], vol. 147, pp. 313-321, 2018.


    • [tr]Müller, T. Frühwirt, D. Haase, R. Schlegel and H. Konietzky,

      Modeling deformation and damage of rock salt using the discrete element method, International Journal of Rock Mechanics and Mining Sciences

      [tr], vol. 103, pp. 230-241, 2018.


    • [tr]Barba, E. Alabort, D. Garcia-Gonzalez, J.J. Moverare, R.C. Reed and A. Jérusalem,

      A thermodynamically consistent constitutive model for diffusion-assisted plasticity in Ni-based superalloys, International Journal of Plasticity

      [tr], doi:10.1016/j.ijplas.2017.12.007.


    • [tr]Ryzy, T. Grabec, P. Sedlak and I.A. Veres,

      Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains, The Journal of the Acoustical Society of America

      [tr], vol. 143, pp. 219-229, 2018.


    • [tr]Quey and L. Renversade,

      Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data, Computer Methods in Applied Mechanics and Engineering

      [tr], vol. 330, pp. 308-333, 2018.


    • [tr]Liu, H. Xu, D. Wang, C. Wang, C. Schulze and M. Oeser,

      Comparison of mechanical responses of asphalt mixtures manufactured by different compaction methods, Construction and Building Materials

      [tr], vol. 162, pp. 765-780, 2018.


    • [tr]Benedetti, V. Gulizzi and A. Milazzo,

      Grain-boundary modelling of hydrogen assisted intergranular stress corrosion cracking, Mechanics of Materials

      [tr], doi:10.1016/j.mechmat.2017.11.001.


    • [tr]Ekh, N. Larijani, E. Dartfeldt, M. Kapp and R. Pippan,

      Prediction of the mechanical behaviour of pearlitic steel based on microcompression tests, micromechanical models and homogenization approaches, European Journal of Mechanics - A/Solids

      [tr], vol. 67, pp. 272-279, 2018.


    • [tr]Liu, L. Li, G. Dirras, K. Ameyama, F. Cazes and M. Ota,

      A three-dimensional multi-scale polycrystalline plasticity model coupled with damage for pure Ti with harmonic structure design, International Journal of Plasticity

      [tr], vol. 100, 192-207, 2018.


    • [tr]Zhang, G.A. Gazonas and F. Bobaru,

      Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis, International Journal of Impact Engineering

      [tr], doi://10.1016/j.ijimpeng.2017.11.010.
2017


    • [tr]Zhang and C. Oskay,

      Material and morphology parameter sensitivity analysis in particulate composite materials, Computational Mechanics

      [tr], doi://10.1007/s00466-017-1512-2.


    • [tr]Xi, G. Fang and S. Xu,

      Multiscale mechanical behavior and microstructure evolution of extruded magnesium alloy sheets: Experimental and crystal plasticity analysis, Materials Characterization

      [tr], doi:10.1016/j.matchar.2017.11.034.


    • [tr]Hu, S. Jiang, Y. Zhang and D. Sun,

      Crystal Plasticity Finite Element Simulation of NiTi Shape Memory Alloy Based on Representative Volume Element, Metals and Materials International

      [tr], vol. 23, pp. 1075-1086, 2017.


    • [tr]Fischbacher, A. Kovacs, H. Oezelt, M. Gusenbauer, D. Suess and T. Schrefl,

      Effective uniaxial anisotropy in easy-plane materials through nanostructuring, Applied Physics Letters

      [tr], doi:10.1063/1.4997816.


    • [tr]Chandra, M.K. Samal, V.M. Chavan and S. Raghunathan,

      Hierarchical multiscale modeling of plasticity in copper: From single crystals to polycrystalline aggregates, International Journal of Plasticity

      [tr], doi://10.1016/j.ijplas.2017.10.014.


    • [tr]Rescka, L. Munk, P. Wriggers and H.J. Maier,

      An EBSD Evaluation of the Microstructure of Crept Nimonic 101 for the Validation of a Polycrystal-Plasticity Model, Journal of Materials Eigineering and Performance

      [tr], doi:10.1007/s11665-017-3046-3.


    • [tr]Morris Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T. Tran Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza and T. Zhun,

      Additively manufactured hierarchical stainless steels with high strength and ductility, Nature Materials

      [tr], doi:10.1038/NMAT5021.


    • [tr]Li, J. Li, B. Tang, J. Fan and H. Yuan,

      Simulation of intergranular ductile cracking in beta titanium alloys based on a micro-mechanical damage model, Materials

      [tr], vol. 10, pp. 1250, 2017.


    • [tr]Hu, S. Jiang, T. Zhou, J. Ti, L. Shi, Q. Chen and M. Yang,

      Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response, Materials

      [tr], vol. 10, pp. 1172, 2017.


    • [tr]Hu, S. Jiang, Y. Zhang, X. Zhu and D. Sun,

      Influence of slip system combination models on crystal plasticity finite element simulation of NiTi shape memory alloy undergoing uniaxial compression, Progress in Natural Science: Materials International

      [tr], doi:10.1016/j.pnsc.2017.08.017.


    • [tr]Khadyko, C.D. Marioara, S. Dumoulin, T. Borvik and O.S. Hopperstad,

      Effects of heat-treatment on the plastic anisotropy of extruded aluminium AA6063, Materials Science and Engineering A

      [tr], vol. 708, pp. 208-221, 2017.


    • [tr]Ayed, C. Robert, G. Germain and A. Ammar,

      Orthogonal micro-cutting modeling of the Ti17 titanium alloy using the crystal plasticity theory, Finite Elements in Analysis and Design

      [tr], vol. 137, pp. 43-55, 2017.


    • [tr]Vijay, N. Paulson and F. Sadeghi,

      A 3D Finite Element Modelling of Crystalline Anisotropy in Rolling Contact Fatigue, International Journal of Fatigue

      [tr], doi:10.1016/j.ijfatigue.2017.09.016.


    • [tr]Sledzinska, R. Quey, B. Mortazavi, B. Graczykowski, M. Placidi, D. Saleta Reig, D. Navarro Urrios, F. Alzina, L. Colombo, S. Roche and C.M. Sotomayor Torres,

      Record Low Thermal Conductivity of Polycrystalline MoS2 films: Tuning the Thermal Conductivity by Grain Orientation, ACS Applied Materials & Interfaces

      [tr], vol. 9, pp. 37905-37911, 2017.
  • [tr]N.Y. Juul, J. Oddershede, A. Beaudoin, K. Chatterjee, M.K.A. Koker, D. Dale, P. Shade and G. Winther,

    Measured resolved shear stresses and Bishop-Hill stress states in individual grains of austenitic stainless steel, Acta Materialia

    [tr], doi:10.1016/j.actamat.2017.09.021.


    • [tr]Guo, C. Sun, M. Fu and M. Han,

      Misorientation-Dependent Twinning Induced Hardening and Texture Evolution of TWIP Steel Sheet in Plastic Deformation Process, Metals

      [tr], pp. 348, vol. 7, 2017.


    • [tr]Zhao, L. Lv, G. Liu and K. Wang,

      Analysis of deformation inhomogeneity and slip mode of TA15 titanium alloy sheets during the hot tensile process based on crystal plasticity model, Materials Science and Engineering A

      [tr], doi:10.1016/j.msea.2017.08.094, 2017.


    • [tr]Barrera, A. Cocks and A. Ponter,

      Advances in Direct Methods for Materials and Structures, Springer

      [tr], ISBN : 3319598104, 9783319598109, 217 pages, 2017.


    • [tr]Magisano, E. Charkaluk, G. de Saxcé and T. Kanit,

      Shakedown Within Polycrystals: A Direct Numerical Assessment, Advances in Direct Methods for Materials and Structure

      [tr], pp. 29-50, 2017.


    • [tr]Chatterjee, J.Y.P. Ko, J.T. Weiss, H.T. Philipp, J. Becker, P. Purohit, S.M. Gruner and A.J. Beaudoin,

      Study of residual stresses in Ti-7Al using theory and experiments, Journal of the Mechanics and Physics of Solids

      [tr], vol. 109, pp. 95-116, 2017.


    • [tr]Yuan, W. Zhang, J. Kim and Y. Liu,

      A Nonlinear Grain-based Fatigue Damage Model for Civil Infrastructure under Variable Amplitude Loads, International Journal of Fatigue

      [tr], doi:10.1016/j.ijfatigue.2017.07.026, 2017.


    • [tr]Guyon, J.Y. Delenne and F. Radjai,

      Matière en grains, book edited by Odile Jacob

      [tr], ISBN : 978-2-7381-3709-8, 2017.


    • [tr]Kasemer, M.P. Echlin, J.C. Stinville, T.M. Pollock and P. Dawson,

      On slip initiation in equiaxed alpha/beta Ti-6Al-4V, Acta Materialia

      [tr], doi:10.1016/j.actamat.2017.06.059, 2017.


    • [tr]Charles, H.T. Nguyen and M. Gaspérini,

      Comparison of hydrogen transport through pre-deformed synthetic polycrystals and homogeneous samples by finite element analysis, International Journal of Hydrogen Energy

      [tr], doi:10.1016/j.ijhydene.2017.06.016, 2017.


    • [tr]El Shawish and L. Cizelj,

      Combining Single- and Poly-Crystalline Measurements for Identification of Crystal Plasticity Parameters: Application to Austenitic Stainless Steel, Crystals

      [tr], vol. 7, doi:10.3390/cryst7060181, 2017.
  • [tr]P.J. Zhao, Z.H. Chen and C.F. Dong,

    Investigation and prediction of tearing failure during extrusion based on a modified shear damage model, Mechanics of Materials

    [tr], doi:10.1016/j.mechmat.2017.05.008, 2017.


    • [tr]Natarajan, E.T. Ooi, A. Saputra and C. Song,

      A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Engineering Analysis with Boundary Elements

      [tr], pp. 218-229, vol. 80, 2017.


    • [tr]Carson, M. Obstalecki, M. Miller and P. Dawson,

      Characterizing Heterogeneous Intragranular Deformations in Polycrystalline Solids Using Diffraction-Based and Mechanics-Based Metrics, Modelling and Simulation in Materials Science and Engineering

      [tr], vol. 25, pp. 055008, 2017.

      made cover of the Journal




    • [tr]Fischbacher, A. Kovacs, H. Oezelt, T. Schrefl, L. Exl, J. Fidler, D. Suess, N. Sakuma, M. Yano, A. Kato, T. Shoji, and A. Manabe,

      Nonlinear conjugate gradient methods in micromagnetics, AIP Advances

      [tr], vol. 7, pp. 045310, 2017.


    • [tr]Petersmann, T. Antretter, T. Waitz and F.D. Fischer,

      A new approach predicting the evolution of laminated nanostructures–martensite in NiTi as an example, Modelling and Simulation in Materials Science and Engineering

      [tr], vol. 25, pp. 035004, 2017.


    • [tr]Ma and T. Zhu,

      Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals, Materials Today

      [tr], vol. 7, pp. 67–76, 2017.


    • [tr]Kasemer, R. Quey and P. Dawson,

      The Influence of Mechanical Constraints Introduced by beta Annealed Microstructures on the Yield Strength and Ductility of Ti-6Al-4V, Journal of the Mechanics and Physics of Solids

      [tr], accepted.
  • [tr]V.P. Nguyen, C.T. Nguyen, T. Rabczuk and S. Natarajan,

    On a family of convected particle domain interpolations in the material point method, Finite Elements in Analysis and Design

    [tr], vol. 126, pp. 50-64, 2017.


    • [tr]Zhang, W. Xu, C. Liu, X. Ma and J. Long,

      Quantitative analysis of surface roughness evolution in FCC polycrystalline metal during uniaxial tension, Computational Materials Science

      [tr], vol. 132, pp. 19-29, 2017.


    • [tr]Wang and P. Li,

      Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina, Ceramics International

      [tr], doi:10.1016/j.ceramint.2017.02.121, 2017.
  • [tr]M.R. Kabir and H. Richter,

    Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy, Materials

    [tr], vol. 10, p. 35, 2017.


    • [tr]Mortazavi, R. Quey, H. Ostadhossein, A. Villani, N. Moulin, A.C.T. Van Duin, and T. Rabczuk,

      Strong thermal transport along polycrystalline transition metal dichalcogenides revealed by multiscale modelling for MoS2, Applied Materials Today

      [tr], vol. 7, pp. 67-76, 2017.
  • [tr]M.R. Murshed and S.I. Ranganathan,

    Hill-Mandel condition and bounds on lower symmetry elastic crystals, Mechanics Research Communications

    [tr], vol. 81, pp. 7-10, 2017.


    • [tr]Wielewski, D.E. Boyce, J.-S. Park, M.P. Miller and P.R. Dawson,

      A methodology to determine the elastic moduli of crystals by matching experimental and simulated lattice strain pole figures using discrete harmonics, Acta Materialia

      [tr], vol. 126, pp. 469-480, 2017.
  • [tr]M.R. Murshed and S.I. Ranganathan,

    Scaling laws in elastic polycrystals with individual grains belonging to any crystal class, Acta Mechanica

    [tr], doi:10.1007/s00707-016-1774-3.


    • [tr]Oezelt, E. Kirk, P. Wohlhuter, E. Muller, L.J. Heyderman, A. Kovacs and T. Schrefl,

      Vortex motion in amorphous ferrimagnetic thin film elements, AIP Advances

      [tr], vol. 7, 056001, 2017.


    • [tr]Gupta, A.J. Beaudoin and J. Chevy,

      Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Materials Science and Engineering A

      [tr], vol. 683, pp. 143-152, 2017.


    • [tr]Lv, H. Li, X. Zhu and W. Liu,

      Discrete element method simulation of random grain-based models, Cluster Computing

      [tr], doi:10.1007/s10586-016-0705-3.
  • [tr]C.H. Pham, S. Thuillier and P.-Y. Manach,

    Prediction of flow stress and surface roughness of stainless steel sheets considering an inhomogeneous microstructure, Materials Science & Engineering A

    [tr], vol. 678, pp. 377-388, 2017.


    • [tr]Toifl, P. Hartlieb, R. Meisels, T. Antretter and F. Kuchar,

      Numerical study of the influence of irradiation parameters on the microwave-induced stresses in granite, Minerals Engineering

      [tr], vol. 103-104, pp. 78-92, 2017.


    • [tr]Adzima, T. Balan, P.Y. Manach, N. Bonnet and L. Tabourot,

      Crystal plasticity and phenomenological approaches for the simulation of deformation behavior in thin copper alloy sheets, International Journal of Plasticity

      [tr], doi:10.1016/j.ijplas.2016.06.003.
2016


    • [tr]Van Pamel, G. Sha, S.I. Rokhlin and M.J.S. Lowe,

      Finite element modelling of elastic wave propagation and scaterring within heterogeneous media, Mathematical, Physical and Engineering Sciences

      [tr], vol. 473, 20160738, 2016.


    • [tr]Lhoutellier, D. Ledue, R. Patte and V. Baltz,

      Monte Carlo investigation of how interfacial magnetic couplings affect blocking temperature distributions in exchange bias bilayers, Jounal of Applied Physics

      [tr], vol. 120, pp. 193902, 2016.


    • [tr]Zouaghi, V. Velay, A. Soveja, T. Pottier, M. Cheikh and F. Rézai-Aria,

      A multi-scale approach to investigate the non linear subsurface behavior and strain localization of X38CrMoV5-1 martensitic tool steel: experiment and numerical analysis, International Journal of Plasticity

      [tr], vol. 87, pp. 130-153, 2016.


    • [tr]Beese, S. Loehnert and P. Wriggers,

      Modeling of Fracture in Polycrystalline Materials

      [tr], Chapter in

      Advances in Discretization Methods

      [tr], SEMA SIMAI Springer Series.


    • [tr]Sledzinska, B. Graczykowski, M. Placidi, D. Saleta Reig, A. El Sachat, J.S. Reparaz, F. Alzina, B. Mortazavi, R. Quey, L. Colombo, S. Roche and C.M. Sotomayor Torres,

      Thermal conductivity of MoS2 polycrystalline nanomembranes, 2D Materials

      [tr], vol. 3, p. 035016, 2016.


    • [tr]Cantor, E. Azéma, P. Sonnay and F. Radjai,

      Three-dimensional bonded-cell model for grain fragmentation, Computational Particle Mechanics

      [tr], doi:10.1007/s40571-016-0129-0.


    • [tr]Khadyko, S. Dumoulin and O.S. Hopperstad,

      Texture gradients and strain localisation in extruded aluminium profile, International Journal of Solids and Structures

      [tr], vol. 97-98, pp. 239-255, 2016.


    • [tr]Liu, Y. Shen, J. Ma, P. Zheng and L. Zhang,

      Grain Size Dependence of Uniform Elongation in Single-Phase FCC/BCC Metals, Journal of Materials Engineering and Performance, 25: 3599, 2016.




    • [tr]Benedetti, V. Gulizzi and V. Mallardo,

      A grain boundary formulation for crystal plasticity, International Journal of Plasticity

      [tr], vol. 83, pp. 202-224, 2016.


    • [tr]Wei, C. Dong, Z. Chen K. Xiao and X. Li,

      The effect of hydrogen on the evolution of intergranular cracking: a cross-scale study using first-principles and cohesive finite element methods, RSC Advances

      [tr], vol. 6, pp. 27282-27292, 2016.


    • [tr]Sadowski and B. Pankowski,

      Numerical Modelling of Two-phase Ceramic Composite Response under Uniaxial Loading, Composite Structures

      [tr], vol. 143, pp/ 388-394, 2016.


    • [tr]Baudoin, V. Magnier, A. El Bartali, J.-F. Witz, Ph. Dufrenoy, F. Demilly and E. Charkaluk,

      Numerical investigation of fatigue strength of grain size gradient materials under heterogeneous stress states in a notched specimen, International Journal of Fatigue

      [tr], vol. 87, pp. 132-142, 2016.


    • [tr]Svenning, M. Fagerström and F. Larsson,

      On computational homogenization of microscale crack propagation, International Journal for Numerical Methods in Engineering

      [tr], vol. 108, pp. 76-90, 2016.


    • [tr]Toifl, R. Meisels, P. Hartlieb, F. Kuchar and Th. Antretter,

      3D numerical study on microwave induced stresses in inhomogeneous hard rocks, Minerals Engineering

      [tr], vol. 90, pp. 29-42, 2016.


    • [tr]Brommesson, M. Ekh and C. Joseph,

      3D grain structure modelling of intragranular fracture in forged Haynes 282, Engineering Fracture Mechanics

      [tr], vol. 154, pp. 57-71, 2016.


    • [tr]Auger, S. Hémery, M. Bourcier, C. Berdin, M. Martin and I. Robertson,

      Crack path in liquid metal embrittlement: experiments with steels and modeling, Fracture and Structural Integrity

      [tr], vol. 35, pp. 250-259, 2016.


    • [tr]El Shawish and L. Cizelj,

      Numerical investigation of grain misorientations at and close to the free surface of FCC polycrystalline metals, Computational Materials Science

      [tr], vol. 113, pp. 133-142, 2016.


    • [tr]Renner, Y. Gaillard, F. Richard, F. Amiot and P. Delobelle,

      Sensitivity of the residual topography to single crystal plasticity parameters in Berkovich nanoindentation on FCC nickel, International Journal of Plasticity

      [tr], vol. 77, pp. 118-140, 2016.
  • [tr]J.V. Beeck, F. Maresca, T.W.J. de Geus, P.J.G. Schreurs and M.G.D. Geers,

    Predicting deformation-induced polymer-steel interface roughening and failure, European Journal of Mechanics / A Solids

    [tr], vol. 55, pp. 1-11, 2016.
2015


    • [tr]Quey, J.H. Driver and P.R. Dawson.

      Intra-grain orientation distributions in hot-deformed aluminium: Orientation dependence and relation to deformation mechanisms, Journal of the Mechanics and Physics of Solids

      [tr], vol. 84, pp. 506-527, 2015.


    • [tr]Zhang, Z.H. Chen and C.F. Dong,

      Simulating Intergranular Stress Corrosion Cracking in AZ31 Using Three-Dimensional Cohesive Elements for Grain Structure, Journal of Materials Engineering and Performance

      [tr], vol. 24, pp. 4908-4918, 2015


    • [tr]Van Pamel, C.R. Brett, P. Huthwaite and M.J.S. Lowe,

      Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions, Journal of the Acoustical Society of America

      [tr], vol. 138, pp. 2326-2336, 2015.


    • [tr]Gulizzi, A. Milazzo and I. Benedetti,

      An enhanced grain-boundary framework for computational homogenization and micro-cracking simulations of polycrystalline materials, Computational Mechanics

      [tr], DOI 10.1007/s00466-015-1192-8.


    • [tr]Cruzadoa, B. Gana, M. Jiméneza, D. Barbaa, K. Ostolazab, A. Linazab, J.M. Molina-Aldareguiaa, J. Llorcaa and J. Segurado,

      Multiscale modeling of the mechanical behavior of IN718 superalloy based on micropillar compression and computational homogenization , Acta Materialia

      [tr], vol. 98, pp. 242-253, 2015.


    • [tr]Svenning,

      On computational homogenization of fracturing continua , Licentiate Thesis

      [tr], Chalmers Univeristy of Technology, 2015.


    • [tr]Zhang, W. Xu, J. Long and Z. Lei,

      Surface Roughening Analysis of Cold Drawn Tube Based on Macro-micro Coupling Finite Element Method, Journal of Materials Processing Technology

      [tr], vol. 224, pp. 189-199, 2015.
  • [tr]S.L. Wong, M. Obstalecki, M.P. Miller and P.R. Dawson,

    Stress and deformation heterogeneity in individual grains within polycrystals subjected to fully reversed cyclic loading, Journal of the Mechanics and Physics of Solids

    [tr], vol. 79, pp. 157-185, 2015.


    • [tr]Oezelt, A. Kovacs, F. Reichel, J. Fischbacher, S. Bance, M. Gusenbauer, C. Schubert, M. Albrecht and T. Schrefl,

      Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures, Journal of Magnetism and Magnetic Materials

      [tr], vol. 381, pp. 28-33, 2015.


    • [tr]Lhoutellier, D. Ledue, R. Patte, F. Barbe, B. Dierny and V. Baltz,

      Bimodal distribution of blocking temperature for exchange-bias ferromagnetic/antiferromagnetic bilayers: a granular Monte Carlo study with less stable magnetic regions spread over the interface, Journal of Physics D: Applied Physics, 2015.


  • [tr]L.-T. Li, Y.C. Lin, L. Li, L.-M. Shen and D.-X. Wen,

    Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy, Journal of Materials Engineering and Performance

    [tr], vol. 24, pp. 1294-1304, 2015.


    • [tr]Oezelt, A. Kovacs, P. Wohlhüter, E. Kirk, D. Nissen, P. Matthes, L.J. Heyderman, M. Albrecht and T. Schrefl,

      Micromagnetic simulation of exchange coupled ferri-/ferromagnetic composite in bit patterned media, Journal of Applied Physics

      [tr], vol. 117, 17E501, 2015.
2014
  • [tr]M.P. Miller and P.R. Dawson,

    Understanding local deformation in metallic polycrystals using high energy X-rays and finite elements, Current Opinion in Solid State and Materials Science

    [tr], vol. 18, pp. 286-299, 2014.


    • [tr]Acerboa, M. Miller and J. Ruffc,

      2014 CHESS Users’ Meeting and Workshops, Synchrotron Radiation News

      [tr], vol. 27, pp. 21-24, 2014.


    • [tr]Ghazvinian, M.S. Diederichs and R. Quey,

      3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing, Journal of Rock Mechanics and Geotechnical Engineering

      [tr], vol. 6, pp. 506-521, 2014.


    • [tr]Zhang, B. Holmedal, O.S. Hopperstad and S. Dumoulin,

      Modelling the plastic anisotropy of aluminum alloy 3103 sheets by polycrystal plasticity, Modelling and Simulation in Materials Science and Engineering

      [tr], vol. 22, pp. 75015-75034, 2014.


    • [tr]Falco, P. Siegkas, E. Barbieri and N. Petrinic,

      A new method for the generation of arbitrarily shaped 3D random polycrystalline domains, Computational Mechanics

      [tr], vol. 54, pp. 1447-1460, 2014.


    • [tr]Lacaille, C. Morel, E. Feulvarch and G. Kermouche,

      Finite element analysis of the grain size effect on diffusion in polycrystalline materials, Computational Materials Science

      [tr], vol. 95, pp. 187-191, 2014.
  • [tr]D.L. Cortie, A.G. Biternas, R.W. Chantrell, X.L. Wang and F. Klose,

    Microscopic model for exchange bias from grain-boundary disorder in a ferromagnet/antiferromagnet thin film with a nanocrystalline microstructure, Applied Physics Letters

    [tr], vol. 105, 032402, 2014.


    • [tr]Ledue, A. Maitre, F. Barbe and L. Lechevallier,

      Temperature dependence of the exchange bias properties of ferromagnetic/antiferromagnetic polycrystalline bilayers,Journal of Magnetism and Magnetic Materials

      [tr], vol. 372, pp. 134-140, 2014.


    • [tr]Deng, D. Morgan and I. Szlufarska,

      Kinetic Monte Carlo simulation of the effective diffusivity in grain boundary networks, Computational Materials Science

      [tr], vol 93, pp. 36-45, 2014.


    • [tr]Obstalecki, S.L. Wong, P.R. Dawson and M.P. Miller,

      Quantitative analysis of crystal scale deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and finite-element simulation, Acta Materialia

      [tr], vol. 75, pp. 259-272, 2014.


    • [tr]Li, L. Shen and G. Proust,

      A texture-based representative volume element crystal plasticity model for predicting Bauschinger effect during cyclic loading, Materials Science and Engineering A

      [tr], vol. 608, pp. 174-183, 2014.


    • [tr]Zang, B. Holmedal, O.S. Hopperstad, S. Dumoulin, J. Gawad, A. Van Bael and P. Van Houtte,

      Multi-level Modelling of Mechanical Anisotropy of Commercial Pure Aluminium Plate: Crystal Plasticity Models, Advanced Yield Functions and Parameter Identification, International Journal of Plasticity

      [tr], vol. 66, pp. 3-30, 2015.


    • [tr]Gonzalez, I. Simonovski, P.J. Withers and J. Quinta da Fonseca,

      Modelling the effect of elastic and plastic anisotropies on stresses at grain boundaries, International Journal of Plasticity

      [tr], vol. 61, pp. 49-63, 2014.
2013


    • [tr]Fernández, A. Jérusalem, I. Gutiérrez-Urrutia and M.T. Pérez-Prado,

      Three-dimensional investigation of grain boundary-twin interactions in a Mg AZ31 alloy by electron backscatter diffraction and continuum modeling, Acta Materialia

      [tr], vol. 61, pp. 7679-7692, 2013
  • [tr]S.L. Wong, J.-S. Park, M. P. Miller and P. R. Dawson,

    A framework for generating synthetic diffraction images from deforming polycrystals using crystal-based finite element formulations, Computational Materials Science

    [tr], vol. 77, pp. 456-466, 2013.


    • [tr]Li, L. Shen, G. Proust, Ch. K.S. Moy and G. Ranzi,

      Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Materials Science and Engineering: A

      [tr], vol. 579, pp. 41-49, 2013.
2012


    • [tr]Montalvo-Urquizo, P. Bobrov, A. Schmidt and W. Wosniok,

      Elastic responses of texturized microscale materials using FEM simulations and stochastic material properties, Mechanics of Materials

      [tr], vol. 47, pp. 1-10, 2012.
  • [tr]C.N. N’Guyen , F. Barbe, N. Osipov, G. Cailletaud, B. Marini and C. Petry,

    Micromechanical local approach to brittle failure in bainite high resolution polycrystals: a short presentation, Computational Material Science

    [tr], vol. 64, pp. 62-65, 2012.


    • [tr]Maitre, D. Ledue, F. Barbe, R. Patte,

      Temperature effect in polycrystalline exchange-biased bilayers: A Monte Carlo study, Journal of Applied Physics

      [tr], vol. 111, 07D105, 2012.


    • [tr]Quey, P.R. Dawson and J.H. Driver,

      Orientation fragmentation in hot-deformed polycrystalline aluminium: Experiment and simulation, Journal of the Mechanics and Physics of Solids

      [tr], vol. 60, pp. 509-524, 2012.


    • [tr]Tahimi, F. Barbe, L. Taleb, R. Quey and A. Guillet,

      Evaluation of microstructure-based transformation plasticity models from experiments on 100C6 steel, Computational Materials Science

      [tr], vol. 52, pp. 55-60, 2012.
2011


    • [tr]Quey, P.R. Dawson and F. Barbe,

      Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Methods in Applied Mechanics and Engineering

      [tr], vol. 200, pp. 1729-1745, 2011.


    • [tr]Barbe and R. Quey,

      A numerical modelling of 3D polycrystal-to-polycrystal diffusive phase transformations involving crystal plasticity, International Journal of Plasticity

      [tr], vol. 27, pp. 823-840, 2011.
2009


    • [tr]Barbe, R. Quey, A. Musienko and G. Cailletaud,

      Three-dimensional characterization of strain localization bands in high-resolution elastoplastic polycrystals, Mechanics Research Communications

      [tr], vol. 39, pp. 762-768, 2009.
2008


    • [tr]Hoang, F. Barbe, R. Quey and L. Taleb,

      FE determination of the plasticity induced during diffusive transformation in the case of nucleation at random locations and instants, Computational Materials Science

      [tr], vol. 43, pp. 101-107, 2008.


    • [tr]Barbe, R. Quey, L. Taleb and E. Souza de Cursi,

      Numerical modelling of the plasticity induced during diffusive transformation. An ensemble averaging approach for the case of random arrays of nuclei, European Journal of Mechanics, A/Solids

      [tr], vol. 27, pp. 1121-1139, 2008.
2007


    • [tr]Barbe, R. Quey and L. Taleb.

      Numerical modelling of the plasticity induced during diffusive transformation. Case of a cubic array of nuclei, European Journal of Mechanics, A/Solids

      [tr], vol. 26, pp. 611-625, 2007.

下载:

[tr]Downloads

[tr]Neper is distributed as a free / open-source software, under the terms of the  GNU General Public License (GPL) [tr]. In short, this means that everyone is free to use Neper and to redistribute it on a free basis. Neper is not in the public domain; it is copyrighted and there are restrictions on its distribution (see the  license [tr] and the related  FAQ).

[tr]It you use Neper, please cite the Neper reference paper in your work (books, papers, talks, ...): R. Quey, P.R. Dawson and F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Computer Methods in Applied Mechanics and Engineering, vol. 200, pp. 1729-1745, 2011. The paper is available for download below.

[tr]Current stable release[tr]Development repository

[tr]A development repository is hosted on GitHub:  http://github.com/rquey/neper [tr]. It provides the development version. Code contributions to be included in the official (public) version of Neper should be submitted as pull requests.

[tr]Supplementary software[tr]References
  • [tr]Romain Quey, Paul Dawson and Fabrice Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Engrg., vol. 200, pp. 1729-1745, 2011:

    paper

  • [tr]Romain Quey and Loïc Renversade, Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data, Comput. Methods Appl. Mech. Engrg., vol. 330, pp. 308-333, 2018:

    postprint link

  • [tr]Romain Quey, Aurelien Villani and Claire Maurice, Nearly uniform sampling of crystal orientations. J. Appl. Crystallogr., vol. 51, pp. 1162-1173, 2018.

    reprint link


[tr]Mailing lists

[tr]There are two mailing lists for Neper, which you may find useful to subscribe to:

  • neper-announce

    [tr]: the “read-only” list for important news: new releases, bug fixes, etc. (low traffic, highly recommended!).
  • neper-users

    [tr]: the “read-write” list for users. Please send all questions, bug reports, requests or any errors or omissions in this manual to this list.

ABAQUS断裂模拟收徒 ,保证快速学会各种ABAQUS断裂模拟方法    1200/人(将享有各种插件以及程序,价值3000+、专门定制视频、全程亲自教学、各种模型调试及解答问题等等,倾囊相教)

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册

×
发表于 2018-11-22 20:42:23 | 显示全部楼层 来自 北京
Simdroid开发平台
l研究这个有一段时间了,楼主知道怎么在Matlab中让每一个形核点产生一个随机的当量壁厚值吗,看到很多人的文章中写,但是我自己就是不知道怎么操作的
回复 不支持

使用道具 举报

发表于 2018-12-19 17:45:20 | 显示全部楼层 来自 北京
许一个冬天 发表于 2018-11-22 20:42
l研究这个有一段时间了,楼主知道怎么在Matlab中让每一个形核点产生一个随机的当量壁厚值吗,看到很多人的 ...

你好 能加个好友吗,想问问你NEPER生成voronoi的问题,微信ZLQ527911
回复 不支持

使用道具 举报

发表于 2019-3-23 14:55:46 | 显示全部楼层 来自 中国
楼主你好 我也在使用neper做有限元模型的建立,QQ:2281514970
回复 不支持

使用道具 举报

发表于 2019-4-10 23:22:29 | 显示全部楼层 来自 中国
MK一下 只是不会Linux 希望能搞定
回复 不支持

使用道具 举报

发表于 2019-6-6 17:16:32 | 显示全部楼层 来自 北京
你好,我最近正在学习neper这款软件,想请教一个问题,neper这款软件生成的voronoi模型中是否可以产生一定的晶界宽度。我看帮助文档下的示例生成后都是晶粒挨着晶粒的。谢谢您
回复 不支持

使用道具 举报

发表于 2019-7-29 08:16:34 | 显示全部楼层 来自 华中科技大学紫菘公寓
您好,我想请教一下,neper构建带孔洞的多晶怎么处理
回复 不支持

使用道具 举报

发表于 2019-9-16 18:26:24 | 显示全部楼层 来自 中国
songkai_tju 发表于 2019-6-6 17:16
你好,我最近正在学习neper这款软件,想请教一个问题,neper这款软件生成的voronoi模型中是否可以产生一定 ...

我看官网上回复的好像不支持有厚度的晶界
回复 不支持

使用道具 举报

发表于 2019-10-19 20:16:15 | 显示全部楼层 来自 湖南长沙
您好,还收徒吗能否留个联系方式
回复 不支持

使用道具 举报

发表于 2019-10-20 10:56:20 | 显示全部楼层 来自 陕西西安
谢谢分享啊
回复 不支持

使用道具 举报

发表于 2020-2-22 21:35:17 | 显示全部楼层 来自 山东滨州
neper建模后可以赋予晶粒各向异性吗
回复 不支持

使用道具 举报

 楼主| 发表于 2020-3-9 00:17:45 | 显示全部楼层 来自 中国
材料小萌新 发表于 2019-10-19 20:16
您好,还收徒吗能否留个联系方式

收着呢,qq 1057593923
回复 不支持

使用道具 举报

发表于 2020-3-22 16:39:18 | 显示全部楼层 来自 中国
您好,可以给我发一下Neper这个插件吗?
回复 不支持

使用道具 举报

发表于 2020-4-14 20:32:08 | 显示全部楼层 来自 湖北
老师,您好,我想请问一下,neper能不能建立有厚度的晶界模型呢?谢谢
回复 不支持

使用道具 举报

发表于 2020-5-4 22:56:12 | 显示全部楼层 来自 江苏苏州
通过geo 插件,可将neper生成的geo文件导入abaqus,直接用几何模型而不是 inp导入
回复 不支持

使用道具 举报

发表于 2020-11-2 16:12:35 | 显示全部楼层 来自 中国
cjm1224 发表于 2020-5-4 22:56
通过geo 插件,可将neper生成的geo文件导入abaqus,直接用几何模型而不是 inp导入 ...

你好,求教怎么操作呢,geo插件在哪里可以下载到呢
回复 不支持

使用道具 举报

发表于 2021-9-30 15:33:41 | 显示全部楼层 来自 中国
听说neper生成的很漂亮
回复 不支持

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|小黑屋|联系我们|仿真互动网 ( 京ICP备15048925号-7 )

GMT+8, 2024-3-29 02:40 , Processed in 0.072775 second(s), 12 queries , Gzip On, MemCache On.

Powered by Discuz! X3.5 Licensed

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表