找回密码
 注册
Simdroid-非首页
查看: 968|回复: 28

[岩土软件与资料] PLAXIS讨论专栏!

[复制链接]
发表于 2007-5-29 20:17:59 | 显示全部楼层 |阅读模式 来自 广东汕头
我现在遇到这样的一个问题。我用plaxis模拟一个基坑开挖问题,围护结构采用双排桩,水泥土搅拌桩止水。水位线为1m。开挖深度为6m。桩长28m。基坑开挖侧土体及地下水分步开挖,另外一侧保持水压不变。我的问题就是当基坑开挖到第一步时,为了通过水位线生成水压,什么是正确的方法?


    我试了三种方法,第一种,水位线沿着墙体竖直向下,整个平面的水位线也就是水平--竖直--水平。但是这种方法在水压生成窗口,在桩两侧及桩底部会产生明显的水压力梯度,假如说桩底部有渗透性比较大的砂土,那么这种方法明显和实际不符合。


    第二种方法,使竖直的水位线稍微倾斜,整个平面的水位线也就是水平--稍微倾斜--水平。这种方法产生的结果同第一种方法是一样的。


    第三种方法,使用“类组水位”,将开挖侧土体水位线定义到开挖土体下部(比如说是4.5m处),并对开挖土体定义为“干类组”,另外将基坑开挖侧底部的土体(一直到基坑底部土体和桩另一侧相通)的水位线定义也定义开挖土体上部(4.5m处),或者使用“从相邻的类组或线性内插”功能。这时候基坑未开挖侧以及桩脚下面的土体的水位线一直为1m处。这种情况生成的水压我感觉比较符合工程实际。但是在最后计算总是有很大的位移,一般都是1m左右,并且最后一步土体破坏。


    我知道“外部水压力计算要求,在和边界相交的位置上水压平衡。但是,如果水位线和边界相交于非实际存在的几何点,就不能精确计算外部水压力”。并且在模型建立中尽量使用点,而不使用线。


    请大家探讨-----

评分

1

查看全部评分

 楼主| 发表于 2007-5-30 10:25:10 | 显示全部楼层 来自 广东汕头

我把国外的这方面文章发下,自己翻译的,大家顶下

Simdroid开发平台
问:
我有一个基坑问题,土层被一竖直墙分开。基坑一侧地下水以及土体每隔2米开挖一次,另外一侧水压保持不变。我的问题就是当基坑开挖到第一步时,为了通过水位线生成水压,什么是“正确的”方法?(由于未知的渗透性参数,我们不能应用地下水渗流生成水压。)
我的水位线是否应该沿着墙体(竖直水位线?这理论上看起来好像不正确),或者我有意的使竖直的水位线稍微的倾斜?(有10cm的倾斜或者用89度代替90度)。
根据我的经验,这两种方法能粗糙草的计算出相差不多的结果。但是,在水压输入窗口,画一竖直的水位线时,一些多余的水压在墙体两侧以及基坑底部显示出来,产生很大水压力梯度。
这些水压力梯度什么意思?作用在那里,墙体上还是墙后的土体?
一个有趣的事情是压力沿基坑垂直向下分布。在墙体附件的一个点显示了基于没有开挖一侧水压力头的水压力。远离墙体的一个点显示了基于基坑开挖2m的水压力。多余水压力(根据PLAXIS手册仅仅被边界两点定义)是个有意义的数值。我假定这个荷载很关键。但是,这两种分析几乎没有差别。
尽管我定义我的水位线稍微倾斜,在墙体的多余水压力还是消失了,因此外部水压力图怎么进行?
为了说明的更清楚,我表明下水位线:第一步(0, 40)---(30,40)--(30, 38)--(50,38)。第二步0,40)---(29.5,40)--(30,38)--(50,38)。墙体为(30,45)--(30,20)
回复 不支持

使用道具 举报

 楼主| 发表于 2007-5-30 10:34:09 | 显示全部楼层 来自 广东汕头
回答:
我感觉很奇怪,当通过水位线生成外部水压你是否考虑了一些很重要的几何点。这是因为:
1. 外部水压力计算要求,在和边界相交的位置上水压平衡。但是,如果水位线和边界相交于非实际存在的几何点,就不能精确计算外部水压力。
2.这是因为,只在几何线的两个端点上定义外部水压力的大小,而两点之间的压力沿几何线的变化呈线性。所以,要精确计算外部水压力,一般潜水位的输入最好和模型边界相交在已有的几何点上。在生成几何模型的时候应该考虑到这个条件。必要的话,应该在几何模型的边界上增加这样的点。
3. 用不同的水位线(沿着基坑边界倾斜或者竖直)生成外部水压力你会看到差别。
4. 要时刻谨记水位线仅为一系列水压为零的点,在其下部水压随深度线性增加(即:假设压力变化是水静力的)。在塑性计算里,只能在这种不排水类组里产生超静水压。固结分析可以用来计算和时间有关的超静水压的生成或消散。在这类计算当中,超静水压的发展变化取决于渗透性参数,而不是材料性质种类。
5. 如果你注意了上说的这几点,模型仍然存在问题的话,请回到前面重新建立模型。
回复 不支持

使用道具 举报

 楼主| 发表于 2007-5-30 10:34:33 | 显示全部楼层 来自 广东汕头
问:
   “外部水压力计算要求,在和边界相交的位置上水压平衡。但是,如果水位线和边界相交于非实际存在的几何点,就不能精确计算外部水压力。”
我认为这是很重要的一点。我认为,如果有一特定的竖向水位线,程序在计算过程中就会对哪点哪点作为零压力力点产生混淆。
我现在能用不连续的类组水位线解决这个问题,结果很好,但是时间比较长还是有点疑问。
我观察到的另外一件事情是竖直水位线(或者稍微倾斜的水位线)在上部和下部都产生了很大的水压力梯度。我怀疑这可能导致数值困难。但是在最后如果没有出现数值问题,那么这可以算出比较好的估计值。
我还注意到,水位线应该穿过已经存在的点/线来得到精确的解。我尽量不用几何线,因为那样会造成多余的土层。我用多余的点来代替。
我还奇怪如果水位线如果没有穿过点/线,错误能有多大。如果错误是同水位线穿过的网格的大小成比例的话,那么这可能还不算太坏。如果错误是同现存相邻的几何点的距离成比例的话,这就线的比较大了。但是我怀疑错误应该被网格的大小决定。
回复 不支持

使用道具 举报

 楼主| 发表于 2007-5-30 10:35:01 | 显示全部楼层 来自 广东汕头
答:
我也同意要增加点。
你所说的“由于渗透性参数未定,我们不能用地下水渗流来产生水压力”。我的建议是:
1.        在我们计算分析时,我们至少应该对土有个大概的了解,是砂土还是粘土。尽管我们知道由于数量级的大小土的渗透性变化很大,但是典型的砂土或者粘土的渗透性还是可以从书本中查到。
2.        地下水渗流功能在PLAXIS中能够实现稳态孔压分布。如果土体十分松散那么地下水渗流就能应用,基坑中的稳态孔压很快就能实现。所以,比较高的孔隙压力梯度在开挖下面就会存在,这将导致基坑隆起或回弹。另一方面,如果土体为粘土,在短时间内将达不到稳定状态条件。但是假定土为不排水性能,其中的超孔隙水压在开挖时就能产生。如果开挖持续很长时间,那么就将进行固结分析(例如,当抽气时超孔隙压力的消散)。因为固结计算时你要进行地下水渗流计算,分析知道什么稳态孔隙压力条件下固结。
如果我没有理解错你画的模型,水平(仍然保持场地表面)-竖直(沿着墙体表面)-水平(基坑底部)。然后点击“水位线”来生成孔压。你得到的孔压理论上是错误的,因为孔隙压力在穿过墙脚处分布为陡峭的梯度(和周围差别很大)。基坑内的孔压分布很低,这可能低估了隆起问题。你可手算出墙脚处孔隙压力,公式在一般的土力学书本中都有。然后你再用手算出的孔隙压力分布用“用户自定义的孔压分布”,这样就很直观。
请谨记你之前特定的水位线“水平-竖直-水平”会对你深基坑的设计造成危害,因为你没有考虑到高孔隙压力梯度(例如隆起问题)。对FE软件包来说特定的竖向水位线很普通。在PLAXIS中,你可以特定线稍微倾斜(例如89.99度)来消除这样单调的问题,如果你仍不太确定孔压的产生,那么你可以在临近墙处画出交叉点来检查墙前和墙后孔压的工作性能。
最后一点,为什么我们不在计算复杂的FE模型时不手算一下。要知道,我们对土还不是很了解。
回复 不支持

使用道具 举报

 楼主| 发表于 2007-5-30 10:37:42 | 显示全部楼层 来自 广东汕头
问:
我计算所出现的问题看起来和你假定的不一样。在岩石底部有切断水源的泥浆墙。岩石层的渗透性参数没有用。对于书本中的渗透性参数,我认为用水位线来生成孔隙水压更保守。
我现在的方法是对不同的类组产生不同的孔压。这样不会产生梯度(尤其是水平孔隙压力轮廓线都在开挖一侧或者未被开挖的土体中。
对于前面所说的点,我有更有趣的发现。第一种方法(水平-竖直-水平)将导致在开挖侧比较大的梯度。第二种方法(89.99度)在未开挖侧有较大的梯度。这好像和你指出的不一样,我感觉,第一种方法好像和土体隆起有关系。试下第二种方法,我打赌你没有见过水压梯度方向为向下方向(或者向开挖侧方向)。
我总体上认同你的稳态渗流模型更现实,但是我们要有足够的参数才能那样做。
手算,嗯,你建议我们要核对那方面?水压或者其他?对于复杂的模型,要有点麻烦。呵呵,我也认同你的观点,不要太依赖电脑。


答:
这样看来我不太理解你典型的基坑问题了。我认为挡土墙的墙脚没有在岩石上。这意味着在墙脚处有渗流。
在你的模型中,如果你对墙脚下面的渗流的截断有信心的话,那么我完全同意你的地下水渗流计算完全不需要。你之前的方法的孔压的指定是合理的。基坑隆起在你的例子中并没有出现。
回复 不支持

使用道具 举报

发表于 2007-6-1 12:30:17 | 显示全部楼层 来自 新加坡
能不能把你的国外的这方面文章贴出来共享一下?
回复 不支持

使用道具 举报

发表于 2007-6-1 12:35:05 | 显示全部楼层 来自 新加坡
这就是所谓z-method,seepage analysis method 以及interpolation method,三种不同方法产生的不同的孔隙水压力。一般来说,z-method是不对的,建议用后两种来作。方法
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-4 10:29:42 | 显示全部楼层 来自 广东汕头
Q:
I'm running an earthquake analysis using the dynamics module. I have, though, two questions for which I could find no answers in the manual:
1. How can you look at output from intermediate steps?
2. How can you view animated output? The manual describes how to create animation, but not how to view it.
A:
1.)        The analysis of intermediate steps is explained in the faq, bulletin number 9.
2.)        2.) After selecting the option 'create animation' from the 'view' menu a window appears in which the phases of the calculation are shown and can be selected for making an animation.
Select the phases of interest and press 'OK'.
A small window will appear that shows the amount of time left until completion of the animation.
Upon completion, the animation is automatically started.
The animation file is created with the extension .AVI and is placed in the .DTA directory of your problem.
Q:
I have a typical excavation problem, soil layers separated by a vertical wall. On one side excavation is going on with water table lowering 2 ft below at each step, on the other side the water table remain constant. My questions is when perform the first step of excavation, in order to generate water pressure via phreatic level, what is the "correct" way to do it near the wall? (Due to unknown permeability parameters, we don't want to use Groundwater flow to generate water pressure.)

Should my phreatic level follow the wall excactly (a vertical phreatic level? which seems to be theoretically not correct), or should I intentionally make it slightly slanted? ( 1 ft off laterally or make it 89 degree instead of 90 degree)

From my experiment, these two methods produces roughly the same results anywhere. However, in the water pressure input window, after you draw a vertical phreatic line,
some external water pressure is shown on both the wall side and the bottom of excavation. They both take the triangular shapes.

What do these pressure diagram mean? Where are these pressure applied to? The Wall or the soil behind the wall?

One funny thing is the pressure applied vertically downward the excavation. On the point near the wall it shows a water pressure based on water head of the unexcavated side. On the point away from the wall it shows a water pressure based on the 2-ft-below-excavation. This external water pressure (according to Plaxis manual is only defined at two end points) is a significant number. I assume this load only could make a huge difference. However, there is almost no difference in two analyses.
Also if I specify my phreatic line slightly slanted, the external pressure on the wall also disappeared? So what is going on with this "external pressure diagrams"
To make it clear:1st way of phreatic line-200, 0)---(0,0)--(0,-31)--(50,-31)
2nd way of phreatic line:(-200, 0)---(-1,0)--(0,-31)--(50,-31) Wall (0,6)--(0,-55)

A:
I was wondering whether you have considered few important points while generating external water pressure through General Phreatic Level option. They are
1. If the phreatic level crosses the boundary in a non-existing geometry point, the external water pressures cannot be calculated accurately. (refer to Page 3-61, Reference Manual, Plaxis 2D-Version 8).
2. Thus, while creating geometry model introduce extra geometry points for phreatic level boundary. Then, define the phreatic level by using these geometry points.
3. Then generate external pressure using different phreatic lines (slanted or vertical following excavation boundary) and you will see the difference.
4. Always keep it in mind that the phreatic level is nothing but the level where the water pressure is zero and below its the water pressure increases linearly with depth according to the specified water weight (i.e. the pressure variation is assumed to be hydrostatic).
This water pressure is taken into consideration while calculating stress in the soil body or any structure, thus exist in the model.
The disipation of water pressure to the load applied depends on the drained or undrained condition. In case of undrained condition (general general calculation practise in fine grained soils) excess water pressure generated while in case of drained condition, the water excess water pressure is generally compensated with the settlement (or deformation) in the soil body.
5. If you are already aware of the above things and the problem still persist in your model then please revert back with the exact input condition of your model.

A:
" 4. Always keep it in mind that the phreatic level is nothing but the level where the water pressure is zero and below its the water pressure increases linearly with depth according to the specified water weight (i.e. the pressure variation is assumed to be hydrostatic). "

I think that is an important point. I don't know how plaxis is coded. But to me, if a vertical phreatic line is specified, it seems that the program is confused about which point to use as the zero-pressure-point for calculation of water pressure along that vertical line.
And it is confused with vertical phreatic line as I observed the pore pressures along the line.

I have been able to circumvent the problem by specifying a discontinuous phreatic line via cluster phreatic line. It worked well. But a little bit more time consuming.

Another thing I observed with vertical phreatic line (or slightly slanted phreatic line) is that it generate a large gradient of water pressure either upstream or downstream. I suspect that may leads to numerical problems. However if no numerical issues ever happen at last, then it still provide a good approximation.

I also noticed that it is suggest that a phreatic line should pass through an existing point/line to obtain desirable accuracy. I have tried to avoid using additional geometry lines, since that generates an additional layer. I put some additional geometry points instead.

Still I wonder if the phreatic line does not pass the exact geometry point/line, how much the error is. If the error is propotional to the element size of the element crossed by the phreatic line, then probably it is still not too bad. If the error is propotional to the distance between the two closes existing geometry point, it may be very large. But I suspect that
the error should be decided by the element size.

A:
While I fully agree with what Mr S K Panda has written, I would like to add the following points.
You said "Due to unknown permeability parameters, we don't want to use Groundwater flow to generate water pressure". My comments are:
1. before we carry out an analysis we should at least have an idea what the soil is, being sandy soil or clayey soil. Although we know that the permeability of a soil can vary by orders of magnitude, the typical range of permeability of sandy and clayey soils can still be found from a text book.
2. the Groundwater flow function in PAXIS Professional is to establish the steady state pore pressure distribution. If the soil is very sandy then the Groundwater flow function is applicable to your case, where steady state flownet can be established quickly within the excavation. Therefore, a high pore pressure gradient is built up beneath the excavation base which may impose a boiling/uplift problem. On the other hand, if the soil is very clayey then the steady state condition may not be reached in short time. But you have to specify the clay to undrained behaviour where excess pore pressure can be generated within the excavation. If the excavation is to be carried out for a sufficient long time, then a Consolidation type calculation has to be carried out to model the swelling of the clay within the excavation (i.e. dissipation of the excess pore pressure which is suction). For the Consolidation type calculation you have to do the Groundwater flow calculation to let the analysis know towards what steady state pore pressure condition it is consolidating to.
If I am not mistaken you had drawn the phreatic line in the fashion “horizontal (retained ground surface) – vertical (along the wall face) – horizontal (excavation base). Then you generated the pore pressure by the “Phreatic line” option. The pore pressure distribution that you had generated was theoretically wrong, as the pore pressure distribution shows a steep gradient across the toe of the wall. The pore pressure distribution within the excavation tends to be low, which may underestimate the boiling problem. You can manually calculate the pore pressure at the wall toe using the “linear seepage approximation”, for which the formula can be easily found from a standard soil mechanics text book. Then you can specify the manually calculated pore pressure distribution using the “User defined pore pressure distribution” function in PLAXIS, which is very straightforward.

Please bear in mind that your previous method of specifying the Phreatic line “horizontal – vertical – horizontal” could be detrimental to your design for deep excavation, as you may seriously underestimate the high pore pressure gradient (i.e. boiling problem) within the excavation.
The problem associated with the specification of a vertical phreatic line is common to FE software packages. In PLAXIS, you can specify the line slightly slanted (such as 89.99 degree) to eliminate this tedious problem. If you are still not sure with the pore pressure generated then you can always draw a cross-section line immediately next to the wall to check the pore pressure acting behind and in front of the wall.
Last comment. Why don’t we just do a hand calculation first before jumping into more sophisticated FE modelling, considering that we still don’t understand what the soil is.

A:
The problem I am working on seems to be different than what you are assuming. It's a slurry wall to bottom of rock with water
cutoff. There is little water flow if not perfectly impervious. While the permeability pamameter of the Rock layer is not available.

Instead of grabbing some textbook permeabilities, I think its more conservative to use phreatic line to generate pore water pressure.

My current way of generationg pore pressure is to specify different phreatic lines for each cluster. Which generates no gradient (exactly horizontal active pore pressure contour in both the excavation side or the retained soil side.

Also from the general methodology point of view; about the following points you mentioned, I have some interesting observations.

" If I am not mistaken you had drawn the phreatic line in the fashion “horizontal (retained ground surface) – vertical (along the wall face) – horizontal (excavation base). Then you generated the pore pressure by the “Phreatic line” option. The pore pressure distribution that you had generated was theoretically wrong..."

" In PLAXIS, you can specify the line slightly slanted (such as 89.99 degree) to eliminate this tedious problem."

The first way (horizontal-vertical-horizontal phreatic line) leads to a large gradient at the excavation side. The 2nd way (89.99 degree) leads to a large gradient at the retained soil side. This seems to be different from what you as pointed out, instead, the 1st way is more likely associated with soil boiling problems.

Try the 2nd way (89.99 degree), and I bet you won't see the water pressure gradient downstream (or the excavation side).

In general I agree with you that a steady state flow model is more realistic. But we'd better have enough good parameters to do that.

Hand calculation, hmm, what do you suggest we shall check for? The water pressure or something else? For more complicated geometry, its gonna be a little bit difficult. Again I agree with you that we can't rely on the computer program too much.

A:
It seemed to me that I have misunderstood your typical excavation problem. I thought there is a retaining wall for which the wall toe is not founded on rockhead. This means there is flow around the toe of the wall.

In your case if you are confident that the flow beneath the wall toe could be reasonably cut off then I fully agree with you that Groundwater flow calculation is not necessary. Your previous method of specifying the pore presssure is reasonable. The boiling problem is unlikely in your case.
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-4 10:33:16 | 显示全部楼层 来自 广东汕头
原帖由 mygeotech 于 2007-6-1 12:35 发表
这就是所谓z-method,seepage analysis method 以及interpolation method,三种不同方法产生的不同的孔隙水压力。一般来说,z-method是不对的,建议用后两种来作。方法


但是我在计算的时候,好像前两种方法所产生的土压力图形是近乎一样的,而第三种方法所造成的位移很大。不知道楼上的对此有如何解释,请教下!
回复 不支持

使用道具 举报

发表于 2007-6-4 11:37:54 | 显示全部楼层 来自 上海杨浦区
关注中。
回复 不支持

使用道具 举报

发表于 2007-6-4 17:14:37 | 显示全部楼层 来自 新加坡
原帖由 civilwyf 于 2007-6-4 10:33 发表


但是我在计算的时候,好像前两种方法所产生的土压力图形是近乎一样的,而第三种方法所造成的位移很大。不知道楼上的对此有如何解释,请教下!


前两种(楼主的方法,都属于Z型水位线方法)在地下连续墙的底部是得不到平衡的孔隙水压力的,土体的被动土压力被高估,因此墙上侧向荷载被低估,引起位移被低估。这种模拟水位线变化的方法是错误的。
第三种用差值的方法,是一种近似正确的方法,墙脚附近的水压力可以平衡,没有跳跃。位移大很正常。
建议使用渗流分析的方法。
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-6 13:03:48 | 显示全部楼层 来自 广东汕头
原帖由 mygeotech 于 2007-6-4 17:14 发表


前两种(楼主的方法,都属于Z型水位线方法)在地下连续墙的底部是得不到平衡的孔隙水压力的,土体的被动土压力被高估,因此墙上侧向荷载被低估,引起位移被低估。这种模拟水位线变化的方法是错误的。
第三 ...



还有个问题,基坑水下开挖(水位线放置在基坑顶面)以及不考虑地下水(把水位线放置在基坑的底部)以及用上面的第三种方法,在水压力及孔隙压力以及超静水压之间有什么不同,现在还有点不太明白。

我试了下,基坑水下开挖结果最小,位移为100mm左右,但是不考虑地下水位移有1.3m左右,但是加入用上面的第三种方法,位移就有19m左右,而且这个19m之前的那一步,位移才有300mm左右,只继续开挖了1.5m,就变化为19m,令人诧异!

另外,根据本地基坑的经验,类似的基坑变形大约在100mm左右。这与水下开挖结果比较符合,但是假如采用水下开挖的话,又与实际工程的施工不符。请问这点将如何解决?

很佩服你的学识,向你学习。qq:32287573.大家一起探讨!
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-6 13:16:12 | 显示全部楼层 来自 广东汕头
[quote]原帖由 mygeotech 于 2007-6-4 17:14 发表


前两种(楼主的方法,都属于Z型水位线方法)在地下连续墙的底部是得不到平衡的孔隙水压力的,土体的被动土压力被高估,因此墙上侧向荷载被低估,引起位移被低估。这种模拟水位线变化的方法是错误的。

假如采用前两种方法,在基坑开挖侧的孔压是按0开始分布的,这时候比地下连续墙底部孔压平衡的情况时的孔压要小,这时候我感觉应该是开挖侧土体的被动土压力被低估。至于墙上侧向荷载被低估,不知道怎么看出来的。
回复 不支持

使用道具 举报

发表于 2007-6-6 13:34:13 | 显示全部楼层 来自 新加坡
原帖由 civilwyf 于 2007-6-6 13:03 发表



还有个问题,基坑水下开挖(水位线放置在基坑顶面)以及不考虑地下水(把水位线放置在基坑的底部)以及用上面的第三种方法,在水压力及孔隙压力以及超静水压之间有什么不同,现在还有点不太明白。

我试 ...


19m?会不会太夸张?

你可用讲讲你是用什么样的土体模型及参数的吗?不然很难回答
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-6 14:01:54 | 显示全部楼层 来自 广东汕头
我用的是mc模型,桩深28mi,开挖6m。土质情况为1m的填土,c=10,&=15,E=5mpa;3.5m的细砂,c=1,&=29,E=7mpa;20m的淤泥,c=16,&=4,E=1mpa;2m的粘土,c=29,&=17,E=19mpa;3.5m的细砂,c=1,&=32,E=15mpa;大概这么多。泊松比都在0.3-0.35之间。
请教!
回复 不支持

使用道具 举报

发表于 2007-6-6 15:24:08 | 显示全部楼层 来自 新加坡
原帖由 civilwyf 于 2007-6-6 14:01 发表
我用的是mc模型,桩深28mi,开挖6m。土质情况为1m的填土,c=10,&=15,E=5mpa;3.5m的细砂,c=1,&=29,E=7mpa;20m的淤泥,c=16,&=4,E=1mpa;2m的粘土,c=29,&=17,E=19mpa;3.5m的细砂,c=1,&=32,E=15mp ...


你的c和phi的值是有效凝聚力和有效摩擦角吗?Plaxis中有两种方法来模拟土体强度:(1)有效凝聚力及摩擦角 (2)不排水强度 (phi=0).

在Plaxis的MC模型中用的是不排水还是排水选项?
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-6 16:14:39 | 显示全部楼层 来自 广东汕头
原帖由 mygeotech 于 2007-6-6 15:24 发表


你的c和phi的值是有效凝聚力和有效摩擦角吗?Plaxis中有两种方法来模拟土体强度:(1)有效凝聚力及摩擦角 (2)不排水强度 (phi=0).

在Plaxis的MC模型中用的是不排水还是排水选项?




填土,排水,k=1m/d;细砂,排水,K=8m/d;淤泥和淤泥质土以及粘土,不排水,K=0.05m/d.

plaxis中的两种方法模拟土体强度是怎么回事,从哪个地方可以查看到相关的资料。plaxis例子上的数据是哪种方法?这方面我不太懂,还忘请教!
回复 不支持

使用道具 举报

发表于 2007-6-7 13:45:52 | 显示全部楼层 来自 新加坡
原帖由 civilwyf 于 2007-6-6 16:14 发表




填土,排水,k=1m/d;细砂,排水,K=8m/d;淤泥和淤泥质土以及粘土,不排水,K=0.05m/d.

plaxis中的两种方法模拟土体强度是怎么回事,从哪个地方可以查看到相关的资料。plaxis例子上的数据是哪种方法 ...


排水在Plaxis中意思是没有超孔隙水压力的产生;
不排水意思是在荷载作用下,有超孔隙水压力。

这个设定对于开挖还是比较重要,你可以看看你的结果中存不存在超孔隙水压力。然后检查一下,墙前后的水压力是如何分布的?合不合理?
回复 不支持

使用道具 举报

 楼主| 发表于 2007-6-7 21:24:49 | 显示全部楼层 来自 广东汕头
你能给我讲下水下开挖,不考虑地下水(将水位线放在模型的底部)以及降水开挖三者的区别吗?尤其是水方面的,概念不是很清楚啊 --

很感谢你
回复 不支持

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Simapps系列直播

Archiver|小黑屋|联系我们|仿真互动网 ( 京ICP备15048925号-7 )

GMT+8, 2024-9-25 06:20 , Processed in 0.080170 second(s), 13 queries , Gzip On, MemCache On.

Powered by Discuz! X3.5 Licensed

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表